3.5.58 \(\int \sec ^2(c+d x) (a+b \sec (c+d x))^2 \, dx\) [458]

3.5.58.1 Optimal result
3.5.58.2 Mathematica [A] (verified)
3.5.58.3 Rubi [A] (verified)
3.5.58.4 Maple [A] (verified)
3.5.58.5 Fricas [A] (verification not implemented)
3.5.58.6 Sympy [F]
3.5.58.7 Maxima [A] (verification not implemented)
3.5.58.8 Giac [B] (verification not implemented)
3.5.58.9 Mupad [B] (verification not implemented)

3.5.58.1 Optimal result

Integrand size = 21, antiderivative size = 80 \[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^2 \, dx=\frac {a b \text {arctanh}(\sin (c+d x))}{d}+\frac {\left (3 a^2+2 b^2\right ) \tan (c+d x)}{3 d}+\frac {a b \sec (c+d x) \tan (c+d x)}{d}+\frac {b^2 \sec ^2(c+d x) \tan (c+d x)}{3 d} \]

output
a*b*arctanh(sin(d*x+c))/d+1/3*(3*a^2+2*b^2)*tan(d*x+c)/d+a*b*sec(d*x+c)*ta 
n(d*x+c)/d+1/3*b^2*sec(d*x+c)^2*tan(d*x+c)/d
 
3.5.58.2 Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.89 \[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^2 \, dx=\frac {a b \text {arctanh}(\sin (c+d x))}{d}+\frac {a^2 \tan (c+d x)}{d}+\frac {a b \sec (c+d x) \tan (c+d x)}{d}+\frac {b^2 \left (\tan (c+d x)+\frac {1}{3} \tan ^3(c+d x)\right )}{d} \]

input
Integrate[Sec[c + d*x]^2*(a + b*Sec[c + d*x])^2,x]
 
output
(a*b*ArcTanh[Sin[c + d*x]])/d + (a^2*Tan[c + d*x])/d + (a*b*Sec[c + d*x]*T 
an[c + d*x])/d + (b^2*(Tan[c + d*x] + Tan[c + d*x]^3/3))/d
 
3.5.58.3 Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.09, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.476, Rules used = {3042, 4275, 3042, 4255, 3042, 4257, 4534, 3042, 4254, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^2(c+d x) (a+b \sec (c+d x))^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^2dx\)

\(\Big \downarrow \) 4275

\(\displaystyle \int \sec ^2(c+d x) \left (a^2+b^2 \sec ^2(c+d x)\right )dx+2 a b \int \sec ^3(c+d x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (a^2+b^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx+2 a b \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx\)

\(\Big \downarrow \) 4255

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (a^2+b^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx+2 a b \left (\frac {1}{2} \int \sec (c+d x)dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (a^2+b^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx+2 a b \left (\frac {1}{2} \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )\)

\(\Big \downarrow \) 4257

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (a^2+b^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx+2 a b \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )\)

\(\Big \downarrow \) 4534

\(\displaystyle \frac {1}{3} \left (3 a^2+2 b^2\right ) \int \sec ^2(c+d x)dx+2 a b \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {b^2 \tan (c+d x) \sec ^2(c+d x)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (3 a^2+2 b^2\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx+2 a b \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {b^2 \tan (c+d x) \sec ^2(c+d x)}{3 d}\)

\(\Big \downarrow \) 4254

\(\displaystyle -\frac {\left (3 a^2+2 b^2\right ) \int 1d(-\tan (c+d x))}{3 d}+2 a b \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {b^2 \tan (c+d x) \sec ^2(c+d x)}{3 d}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {\left (3 a^2+2 b^2\right ) \tan (c+d x)}{3 d}+2 a b \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {b^2 \tan (c+d x) \sec ^2(c+d x)}{3 d}\)

input
Int[Sec[c + d*x]^2*(a + b*Sec[c + d*x])^2,x]
 
output
((3*a^2 + 2*b^2)*Tan[c + d*x])/(3*d) + (b^2*Sec[c + d*x]^2*Tan[c + d*x])/( 
3*d) + 2*a*b*(ArcTanh[Sin[c + d*x]]/(2*d) + (Sec[c + d*x]*Tan[c + d*x])/(2 
*d))
 

3.5.58.3.1 Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 

rule 4275
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^2, x_Symbol] :> Simp[2*a*(b/d)   Int[(d*Csc[e + f*x])^(n + 1), x], x] 
 + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, 
 e, f, n}, x]
 

rule 4534
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1) 
)), x] + Simp[(C*m + A*(m + 1))/(m + 1)   Int[(b*Csc[e + f*x])^m, x], x] /; 
 FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]
 
3.5.58.4 Maple [A] (verified)

Time = 1.22 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.92

method result size
derivativedivides \(\frac {\tan \left (d x +c \right ) a^{2}+2 a b \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-b^{2} \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )}{d}\) \(74\)
default \(\frac {\tan \left (d x +c \right ) a^{2}+2 a b \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-b^{2} \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )}{d}\) \(74\)
parts \(\frac {a^{2} \tan \left (d x +c \right )}{d}-\frac {b^{2} \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )}{d}+\frac {a b \sec \left (d x +c \right ) \tan \left (d x +c \right )}{d}+\frac {a b \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}\) \(79\)
norman \(\frac {\frac {4 \left (3 a^{2}+b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3 d}-\frac {2 \left (a^{2}-a b +b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{d}-\frac {2 \left (a^{2}+a b +b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}}{\left (-1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{3}}+\frac {a b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d}-\frac {a b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d}\) \(132\)
risch \(-\frac {2 i \left (3 a b \,{\mathrm e}^{5 i \left (d x +c \right )}-3 a^{2} {\mathrm e}^{4 i \left (d x +c \right )}-6 a^{2} {\mathrm e}^{2 i \left (d x +c \right )}-6 b^{2} {\mathrm e}^{2 i \left (d x +c \right )}-3 a b \,{\mathrm e}^{i \left (d x +c \right )}-3 a^{2}-2 b^{2}\right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{3}}+\frac {a b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{d}-\frac {a b \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{d}\) \(139\)
parallelrisch \(\frac {-9 \left (\cos \left (d x +c \right )+\frac {\cos \left (3 d x +3 c \right )}{3}\right ) a b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+9 \left (\cos \left (d x +c \right )+\frac {\cos \left (3 d x +3 c \right )}{3}\right ) a b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+\left (3 a^{2}+2 b^{2}\right ) \sin \left (3 d x +3 c \right )+6 a b \sin \left (2 d x +2 c \right )+3 \sin \left (d x +c \right ) \left (a^{2}+2 b^{2}\right )}{3 d \left (\cos \left (3 d x +3 c \right )+3 \cos \left (d x +c \right )\right )}\) \(146\)

input
int(sec(d*x+c)^2*(a+b*sec(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
1/d*(tan(d*x+c)*a^2+2*a*b*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan 
(d*x+c)))-b^2*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c))
 
3.5.58.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 100, normalized size of antiderivative = 1.25 \[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^2 \, dx=\frac {3 \, a b \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, a b \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (3 \, a b \cos \left (d x + c\right ) + {\left (3 \, a^{2} + 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + b^{2}\right )} \sin \left (d x + c\right )}{6 \, d \cos \left (d x + c\right )^{3}} \]

input
integrate(sec(d*x+c)^2*(a+b*sec(d*x+c))^2,x, algorithm="fricas")
 
output
1/6*(3*a*b*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*a*b*cos(d*x + c)^3*log 
(-sin(d*x + c) + 1) + 2*(3*a*b*cos(d*x + c) + (3*a^2 + 2*b^2)*cos(d*x + c) 
^2 + b^2)*sin(d*x + c))/(d*cos(d*x + c)^3)
 
3.5.58.6 Sympy [F]

\[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^2 \, dx=\int \left (a + b \sec {\left (c + d x \right )}\right )^{2} \sec ^{2}{\left (c + d x \right )}\, dx \]

input
integrate(sec(d*x+c)**2*(a+b*sec(d*x+c))**2,x)
 
output
Integral((a + b*sec(c + d*x))**2*sec(c + d*x)**2, x)
 
3.5.58.7 Maxima [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.05 \[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^2 \, dx=\frac {2 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} b^{2} - 3 \, a b {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 6 \, a^{2} \tan \left (d x + c\right )}{6 \, d} \]

input
integrate(sec(d*x+c)^2*(a+b*sec(d*x+c))^2,x, algorithm="maxima")
 
output
1/6*(2*(tan(d*x + c)^3 + 3*tan(d*x + c))*b^2 - 3*a*b*(2*sin(d*x + c)/(sin( 
d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) + 6*a^2*t 
an(d*x + c))/d
 
3.5.58.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 178 vs. \(2 (76) = 152\).

Time = 0.31 (sec) , antiderivative size = 178, normalized size of antiderivative = 2.22 \[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^2 \, dx=\frac {3 \, a b \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, a b \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (3 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 3 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 6 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 3 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}}{3 \, d} \]

input
integrate(sec(d*x+c)^2*(a+b*sec(d*x+c))^2,x, algorithm="giac")
 
output
1/3*(3*a*b*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*a*b*log(abs(tan(1/2*d*x 
+ 1/2*c) - 1)) - 2*(3*a^2*tan(1/2*d*x + 1/2*c)^5 - 3*a*b*tan(1/2*d*x + 1/2 
*c)^5 + 3*b^2*tan(1/2*d*x + 1/2*c)^5 - 6*a^2*tan(1/2*d*x + 1/2*c)^3 - 2*b^ 
2*tan(1/2*d*x + 1/2*c)^3 + 3*a^2*tan(1/2*d*x + 1/2*c) + 3*a*b*tan(1/2*d*x 
+ 1/2*c) + 3*b^2*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^3)/d
 
3.5.58.9 Mupad [B] (verification not implemented)

Time = 15.11 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.76 \[ \int \sec ^2(c+d x) (a+b \sec (c+d x))^2 \, dx=\frac {2\,a\,b\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}-\frac {\left (2\,a^2-2\,a\,b+2\,b^2\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (-4\,a^2-\frac {4\,b^2}{3}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (2\,a^2+2\,a\,b+2\,b^2\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \]

input
int((a + b/cos(c + d*x))^2/cos(c + d*x)^2,x)
 
output
(2*a*b*atanh(tan(c/2 + (d*x)/2)))/d - (tan(c/2 + (d*x)/2)^5*(2*a^2 - 2*a*b 
 + 2*b^2) - tan(c/2 + (d*x)/2)^3*(4*a^2 + (4*b^2)/3) + tan(c/2 + (d*x)/2)* 
(2*a*b + 2*a^2 + 2*b^2))/(d*(3*tan(c/2 + (d*x)/2)^2 - 3*tan(c/2 + (d*x)/2) 
^4 + tan(c/2 + (d*x)/2)^6 - 1))